

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data Inputs/	$4.5 / 0.15$	$90 \mu \mathrm{~A} /-90 \mu \mathrm{~A}$
	3-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Data Inputs/	$3.5 / 0.117$	$70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}$
	3-STATE Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
$\mathrm{T} / \overline{\mathrm{R}}$	Transmit/Receive Input	$2.0 / 0.067$	$40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Enable Input	$2.0 / 0.067$	$40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}$
PARITY	Parity Input//	$3.5 / 0.117$	$70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}$
	3-STATE Output	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
ODD/EVEN	ODD/EVEN Parity Input	$1.0 / 0.033$	$20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}$
$\overline{\text { ERROR }}$	Error Output	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Functional Description

The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}}$) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A Port to the B Port; Receive (active LOW) enables data from the B Port to the A Port.
The Output Enable ($\overline{\mathrm{OE}}$) input disables the parity and ERROR outputs and both the A and B Ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.
When transmitting (T/信 HIGH), the parity generator detects whether an even or odd number of bits on the A Port are HIGH and compares these with the condition of the parity

Function Table

Number of Inputs that are HIGH	Inputs			Input/ Output	Outputs	
	$\overline{\text { OE }}$	T/R	$\frac{\text { ODD/ }}{\text { EVEN }}$	Parity	ERROR	Outputs Mode
0, 2, 4, 6, 8	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
	L	L	H	H	H	Receive
	L	L	H	L	L	Receive
	L	L	L	H	L	Receive
	L	L	L	L	H	Receive
1, 3, 5, 7	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
	L	L	L	L	L	Receive
Immaterial	H	X	X	Z	Z	Z

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
L = LOW Voltage Level
X = Immaterial
Z = High Impedance
select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.
In receiving mode (T/R LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Function Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	T/ \bar{R}	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High-Z State

X = Immaterial

Absolute Maximum Ratings (Note 1)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V $_{\mathrm{CC}}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n} \mathrm{~B}_{n}, \text { Parity, } \overline{\mathrm{ERROR}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { Parity, } \overline{\mathrm{ERROR}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}, \text { Parity, } \overline{\text { ERROR }}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} \hline 0.5 \\ 0.55 \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}} \text { Parity, } \overline{\text { ERROR }}\right) \end{aligned}$
I_{H}	Input HIGH Current			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\mathrm{ODD} / \overline{\mathrm{EVEN}}) \\ & \mathrm{V}_{\mathrm{IN}} 2.7 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}) \end{aligned}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=0$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}, \mathrm{ODD} / \overline{\mathrm{EVEN}})$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\text { Parity, } \mathrm{B}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
ILL	Input LOW Current			$\begin{aligned} & -20 \\ & -40 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{ODD} / \overline{\mathrm{EVEN}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}) \end{aligned}$
$\mathrm{l}_{\text {OZH }}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$ (ERROR)
lozl	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ ($\overline{\text { ERROR }}$)
$\mathrm{I}_{\mathrm{IH}+} \mathrm{I}_{\text {OZH }}$	Output Leakage Current			$\begin{aligned} & \hline 70 \\ & 90 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{I \mathrm{O}}=2.7 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity }\right) \\ & \mathrm{V}_{\mathrm{IO}}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
$\overline{I_{\text {IL }}+I_{\text {OZL }}}$	Output Leakage Current			$\begin{aligned} & \hline-70 \\ & -90 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{I / \mathrm{O}}=0.5 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity }\right) \\ & \mathrm{V}_{I / \mathrm{O}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
los	Output Short-Circuit Current	$\begin{gathered} \hline-60 \\ -100 \end{gathered}$		$\begin{aligned} & -150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity, ERROR }\right) \end{aligned}$
${ }_{\text {ICEX }}$	Output HIGH Leakage Current			$\begin{array}{r} \hline 250 \\ 1.0 \\ 2.0 \end{array}$	$\mu \mathrm{A}$ mA mA	Max Max Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}(\overline{\text { ERROR }}) \\ & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity }\right) \\ & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
I_{zz}	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, Parity, $\left.\overline{\text { ERROR }}\right)$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		101	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current		112	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {ccz }}$	Power Supply Current		109	145	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{n} \text { to } B_{n}, B_{n} \text { to } A_{n}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to Parity	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ODD/EVEN to PARITY	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ODD/EVEN to $\overline{\text { ERROR }}$	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.2 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay B_{n} to $\overline{\mathrm{ERROR}}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 28.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 23.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay PARITY to ERROR	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 18.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{ERROR}}$ (Note 3)	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.7 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{ERROR}}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to PARITY	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.7 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to PARITY	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns

Note 3: These delay times reflect the 3-STATE recovery time only and not the signal time through the buffers or the parity check circuity. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable Time).

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
 Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

-

